FP3 Numerical Methods for the Solution of First Order Differential Equations Questions

5 (a) The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x,y) = x \ln x + \frac{y}{x}$$

and

$$y(1) = 1$$

(i) Use the Euler formula

$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(1.1).

(3 marks)

(ii) Use the formula

$$y_{r+1} = y_{r-1} + 2h f(x_r, y_r)$$

with your answer to part (a)(i) to obtain an approximation to y(1.2), giving your answer to three decimal places. (4 marks)

(b) (i) Show that $\frac{1}{x}$ is an integrating factor for the first-order differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{x}y = x \ln x \tag{3 marks}$$

- (ii) Solve this differential equation, given that y = 1 when x = 1. (6 marks)
- (iii) Calculate the value of y when x = 1.2, giving your answer to three decimal places. (1 mark)

2 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x, y) = \frac{x^2 + y^2}{xy}$$

and

$$y(1) = 2$$

(a) Use the Euler formula

$$y_{r+1} = y_r + hf(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(1.1).

(3 marks)

(b) Use the improved Euler formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = hf(x_r, y_r)$ and $k_2 = hf(x_r + h, y_r + k_1)$ and h = 0.1, to obtain an approximation to y(1.1), giving your answer to four decimal places. (6 marks)

1 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x, y) = ln(1 + x^2 + y)$$

and

$$v(1) = 0.6$$

(a) Use the Euler formula

$$y_{r+1} = y_r + h f(x_r, y_r)$$

with h = 0.05, to obtain an approximation to y(1.05), giving your answer to four decimal places. (3 marks)

(b) Use the improved Euler formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = h f(x_r, y_r)$ and $k_2 = h f(x_r + h, y_r + k_1)$ and h = 0.05, to obtain an approximation to y(1.05), giving your answer to four decimal places. (6 marks)

2 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{f}(x, y)$$

where

$$f(x, y) = \sqrt{x^2 + y^2 + 3}$$

and

$$y(1) = 2$$

(a) Use the Euler formula

$$y_{r+1} = y_r + hf(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(1.1), giving your answer to four decimal places. (3 marks)

(b) Use the improved Euler formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = hf(x_r, y_r)$ and $k_2 = hf(x_r + h, y_r + k_1)$ and h = 0.1, to obtain an approximation to y(1.1), giving your answer to four decimal places. (6 marks)

FP3 Numerical Methods for the Solution of First Order Differential Equations Answers

5(a)(i)

$$y(1.1) = y(1) + 0.1[\ln 1 + 1/1]$$
 M1A1

 $= 1 + 0.1 = 1.1$
 A1
 3

 (ii)
 $y(1.2) = y(1) + 2(0.1)[f(1.1, y(1.1)]$
 M1A1

 = $1 + 2(0.1)[1.1 \ln 1.1 + (1.1)/1.1]$
 A1 $^{\checkmark}$
 On answer to (a)(i)

 = $1 + 0.2 \times 1.104841198...$
 A1
 4
 CAO

 (b)(i)
 IF is $e^{\int -\frac{1}{x} dx}$
 M1
 Condone $e^{\int \frac{1}{x} dx}$ for M mark

 $= e^{-\ln x}$
 A1
 A3
 AG (be convinced) (b)(i) Solutions using the printed answer must be convincing before any marks are awarded

 (ii)
 $\frac{d}{dx} \left(\frac{y}{x} \right) = \ln x$
 M1A1
 Integration by parts for $x^k \ln x$
 $\frac{y}{x} = x \ln x - x + c$
 A1
 Condone missing c .

 $y(1) = 1 \Rightarrow 1 = \ln 1 - 1 + c$
 m1
 Dependent on at least one of the two previous M marks

 $\Rightarrow c = 2 \Rightarrow y = x^2 \ln x - x^2 + 2x$
 A1
 6
 OE eg $\frac{y}{x} = x \ln x - x + 2$

 (iii)
 $y(1.2) = 1.222543... = 1.223$ to 3dp
 B1
 1

	= 0.1×2.53434 = $0.2534(34)$ $y(1.1) = y(1) + \frac{1}{2}[0.25 + 0.253434]$	A1√ m1		PI
	$y(1.1) = y(1) + \frac{1}{2} [0.25 + 0.253434]$ = 2.2517 to 4dp	m1 A1√	6	If answer not to 4dp withhold this mark
	· · · ·			
	$k_2 = 0.1 \times f(1.1, 2.25)$ - 0.1 × 2.53434 - 0.2534(34)	A1√ M1		PI ft from (a)
(b)	$y_1 = 2 + 0.1 \times \left[\frac{1^2 + 2^2}{1 \times 2} \right]$ $= 2 + 0.1 \times 2.5 = 2.25$ $k_1 = 0.1 \times 2.5 = 0.25$	M1 A1 A1 M1	3	DI O C ()

	Total		9	•
	= 0.6492 to 4dp	A1F	6	Must be 4 dp ft one slip
	$= 0.6 + 0.5 \times 0.09836$			values for k's
	$y(1.05) = y(1) + \frac{1}{2}[k_1 + k_2]$	m1		Dep on previous two Ms and numerical
	,	AIF		r1
	= 0.0505(85)	A1F		PI
	$ = 0.05 \times \ln(1 + 1.05^2 + 0.6477)$	M1		
	$k_2 = 0.05 \times \text{f} (1.05, 0.6477)$	1.11		is constant a constant in (a)
` /	. , , , , ,	A1F		ft candidate's evaluation in (a)
(b)	$k_1 = 0.05 \times \ln(1+1+0.6) = 0.0477(75)$	M1		PI
	= 0.6477 (7557) = 0.6478 to 4dp	711	3	Condone > 4 ap
1(a)	$y(1.05) = 0.6 + 0.05 \times [\ln(1+1+0.6)]$	M1A1 A1	3	Condone >4 dp